The Role of Auxin on the Evolution of Embryo Development and Axis Formation in Land Plants

نویسندگان

  • DorothyBelle Poli
  • Todd J. Cooke
  • Gerry Deitzer
  • Mark Jacobs
  • Heven Sze
  • Steven Wolniak
چکیده

Title of Dissertation: THE ROLE OF AUXIN ON THE EVOLUTION OF EMBRYO DEVELOPMENT AND AXIS FORMATION IN LAND PLANTS DorothyBelle Poli, Doctor of Philosophy, 2005 Dissertation directed by: Professor Todd J. Cooke, Cell Biology and Molecular Genetics This thesis examined the role of auxin in the evolution of land plants. Several approaches were used to study how auxin regulates the development in the bryophyte sporophytes. The altered growth of isolated young sporophytes exposed to applied auxin (indole-3-acetic acid) or an auxin antagonist (p-chlorophenoxyisobutyric acid) suggested that endogenous auxin regulates the rates of axial growth in all bryophyte divisions. In the hornwort Phaeoceros personii, auxin moved at very low fluxes, was insensitive to an auxin-transport inhibitor (N-[1-naphthyl]phthalamic acid), and exhibited a polarity ratio close to 1.0, implying that auxin moves by simple diffusion. The liverwort Pellia epiphylla exhibited somewhat higher auxin fluxes, which were sensitive to transport inhibitors but lacked any measurable polarity. Thus, auxin movement in liverwort sporophytes appears to result from facilitated diffusion. In the moss Polytrichum ohioensis, auxin movement was predominantly basipetal in young sporophytes and occurred at high fluxes exceeding those measured in maize coleoptiles. In older sporophytes, acropetal auxin flux had increased beyond the level measured for basipetal flux in the specimens observed in several, but not all, seasons. The evidence from both inhibitor treatments and isolated tissues is consistent with the interpretation that the cortex carries out basipetal transport in both younger and older sporophytes, whereas the central vascular tissues carries out basipetal transport in younger sporophytes and acropetal flux in older sporophytes. Given the significant differences in fall rainfall in the collection years, the purported sensitivity of vascular tissue development may account for the seasonal variation observed in these experiments. Auxin regulators and polar transport were also used to study the regulation of the embryogenesis of the fern Marsilea vestita. Auxin biosynthesis inhibitors affected initial cell proliferation resulting in the formation of aborted embryos, p-chlorophenoxyisobutyric acid delayed growth and development in all stages of embryogenesis while α-naphthaleneacetic acid mediated rapid cell proliferation that caused enlarged disorganized embryos. Polar auxin transport inhibitors caused no significant abnormalities, which suggested a limited role for polar transport in fern embryogenesis. In conclusion, this evidence suggests that auxin is ultimately involved in the establishment of the body plans in all land plant sporophytes. THE ROLE OF AUXIN ON THE EVOLUTION OF EMBRYO DEVELOPMENT AND AXIS FORMATION IN LAND PLANTS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early embryo development in Fucus distichus is auxin sensitive.

Auxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spe...

متن کامل

Auxin conjugates: their role for plant development and in the evolution of land plants.

Auxin conjugates are thought to play important roles as storage forms for the active plant hormone indole-3-acetic acid (IAA). In its free form, IAA comprises only up to 25% of the total amount of IAA, depending on the tissue and the plant species studied. The major forms of IAA conjugate are low molecular weight ester or amide forms, but there is increasing evidence of the occurrence of peptid...

متن کامل

Modeling Framework for the Establishment of the Apical-Basal Embryonic Axis in Plants

The apical-basal axis of the early plant embryo determines the body plan of the adult organism. To establish a polarized embryonic axis, plants evolved a unique mechanism that involves directional, cell-to-cell transport of the growth regulator auxin. Auxin transport relies on PIN auxin transporters, whose polar subcellular localization determines the flow directionality. PIN-mediated auxin tra...

متن کامل

Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities

Auxin is an important plant growth regulator, and plays a key role in apical-basal axis formation and embryo differentiation, but the mechanism remains unclear. The level of indole-3-acetic acid (IAA) during zygote and embryo development of Nicotiana tabacum L. is investigated here using the techniques of GC-SIM-MS analysis, immunolocalization, and the GUS activity assay of DR5::GUS transgenic ...

متن کامل

Local Auxin Sources Orient the Apical-Basal Axis in Arabidopsis Embryos

Establishment of the embryonic axis foreshadows the main body axis of adults both in plants and in animals, but underlying mechanisms are considered distinct. Plants utilize directional, cell-to-cell transport of the growth hormone auxin to generate an asymmetric auxin response that specifies the embryonic apical-basal axis. The auxin flow directionality depends on the polarized subcellular loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005